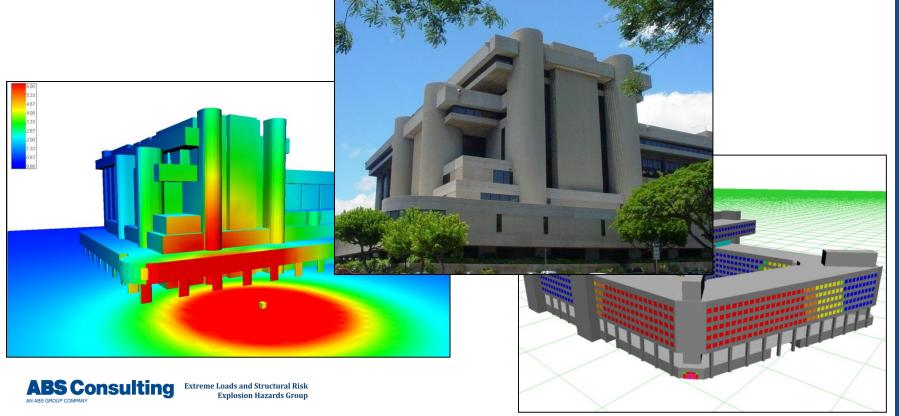


Greg Knight, Technical Manager

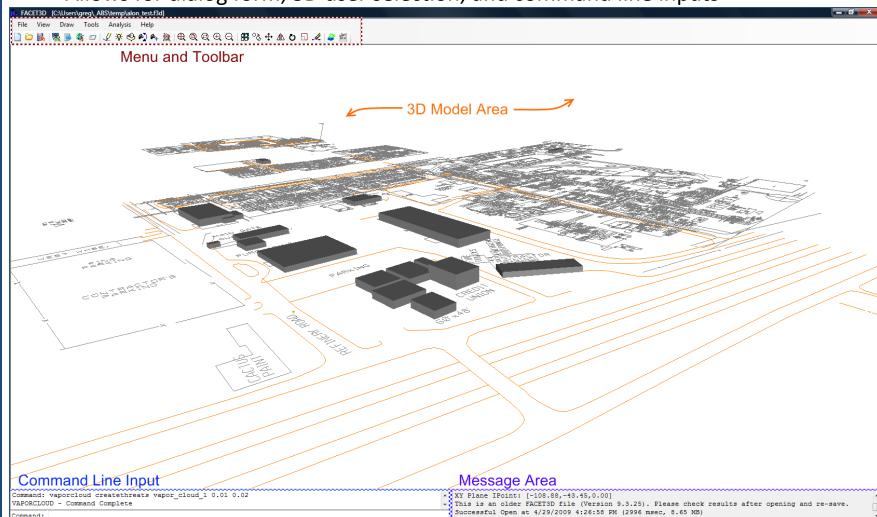


History

- FACET3D was developed by ABS Consulting's San Antonio office to assess structures and sites for extreme loading scenarios
- In development since 2001
- Extensively used for public and private sector AT/FP work since 2002 (GSA, Federal Bldgs, Singapore)
- Extensively used for petrochemical facility siting work starting in ~2004 100's of projects

Summary of Features

- Features include
 - High explosive, vapor cloud, BLEVE, PVB models
 - Jet/Pool fire hazards
 - Toxic dispersion hazards
 - Structural assessments of occupied buildings
 - Import of PHAST dispersion and fire results
 - Risk assessments
- Support Website: <u>http://www.facet3d.com</u>
- Users Guide: <u>http://facet3d.com/wiki/index.php?title=Documentation</u>
- 100% VB .NET 4.5 framework desktop application


USER INTERFACE AND GEOMETRY DEFINITION

User Interface

5220.82,3895.62

- FACET3D is developed for Microsoft Windows (XP,Vista,7)
- Uses OpenGL for 3D rendering
- Allows for dialog form, 3D user selection, and command line inputs

User Interface

- Data objects in FACET3D include
 - User Defined Meshes Analogous to AutoCAD layers, meshes contain 3D surfaces and 2D lines, circles, arcs, and text objects used for defining free form buildings. Each mesh has independent material (structural) P-I diagrams.
 - Predefined Buildings Easy to define rectangular structures. Multiple materials assigned by wall face/roof
 - Threats source definition of high explosive and vapor cloud threats
 - Gauges Used to measure incident pressure/impulse without underlying geometry
 - Labels 3D labels with markers and leaders useful for annotation
 - Congestion Blocks definitions of MEM or BST congestion regions for eventual vapor cloud explosion threat creation

Objects						
User Defined Meshes	Mesh Name	Color	Calc Type	Transparency	Enabled	MaterialCalc
Create New Mesh	_site msh_zone1_2	128,128,128 255,0,0	Automatic Automatic	Solid Solid	True False	None None
Edit Mesh						
Delete Mesh(s)						
Copy Mesh						
Toggle Enabled						
Set Color						
Set Calc Type						
Set Transparency						
User Defined Meshes						
Predefined Buildings						
Threats						
Gauges						
Labels						
Congestion Blocks						
Vapor Clouds						
Ignition Sources						
Jet / Pool Fires						
Toxics						
Regions						

BS Consulting Extreme Loads and Structural Risk Explosion Hazards Group

User Interface

- Data objects in FACET3D include
 - Dispersions– dispersion data imported from PHAST
 - Scenarios collections of dispersion, fire, explosion cases with frequency data

Regions

- Ignition Sources open flame locations used to limit vapor cloud size when overlapping vapor clouds with congestion blocks
- Jet/Pool Fires
 - Imported radiation vs. distance data used for evacuation modeling
 - Flame surface and emissive power for detailed fire modeling (view factors, radiation shielding)
- Regions generic 2D polygon areas used for any graphical representations

Vapor Clouds	Name	Gas	Position	Angle	Extents	Heigh
Vapor Clouds Create New Vapor Cloud Edit Vapor Cloud Delete Vapor Cloud(s) Copy Vapor Cloud Toggle Enabled Set Color Set Transparency	02e 03c 04c 05c 06c 07down 08b	N-Hexane N-Hexane N-Hexane N-Hexane N-Hexane THF	302 631 0 240 631 0 132.7 800.7 0 192.5 799.5 0 184.5 797.5 0	Angle 0 310 180 180 310 10	Exerts 140 164 220.5 116.9 116.9 296.2 82.9	1 1 7.2 5.3 5.3 7.1 3.4
User Defined Meshes						
Predefined Buildings						
Threats						
Gauges						
Labels						
Congestion Blocks						
Vapor Clouds						
Ignition Sources						
Jet / Pool Fires						
Toxics						
Regions						

BS Consulting BE GROUP COMPANY BE GROUP COMPANY Explosion Hazards Group

Options

• Extensive options controlling analysis modes, line contours creation, legends, rendering, etc...

	File Options	
nfo Analysis Risk Variables Base Grid	Display Rendering Object Rendering	
ysis General Analysis Type Consequence Calculate Vertex Loads Disable Calculation Of All Ground Contours Path Finding Method Linear Straight Line Distance Dijkstra's Path Finding Dijkstra's Path Finding Dijkstra's Path Finding Dijkstra's Path S Grid Type ByNode Node to Node Delta 5 Optimize Paths	Fire Settings Modeled Fires View Factor Error Tolerance 1 % ☐ Include Occlusion Testing ✔ Include Transmissivity ✔ Truncate Using Ground Plane ✔ Increase SEP Accordingly ☐ Use Cylinder Rame Shape Models If Possible ☐ Use PreCalc'd Radiation for All Directions ☐ Translucent Surfaces Reduce Radiation Structured Grid Evac Path StraightLine ♥	Toxics Toxic Concentration Toxic Conc. Results As Equiv. Conc. Concentration Transform None Reference/Avg Time 60 min Vuse Log-Linear Interpolation for Data Lookups Toxic Lethality Lethality Model Crosswind V Stationary Duration 5 min Vuse Monotonically Decreasing Curves Worst Case Time for Evac
Show Grid (ij.k) 0 0 ? Clearing Clearing Lines Mesh ✓ Buildings ✓ Buildings ✓ Show Contours On Doors And Windows BDL Model Version2 Internal Explosion LFL Fraction 0.5	Lethality N 1.3333 Model Lees V User Defined Model Probit A -14.9 Probit B 2.56 Probit Values assume kW/m2 for I and seconds for t in the equation Pr=A+B*ln(t*I^N). Safe Radiation Level 1.6 kW/m2	Rammable Dispersions

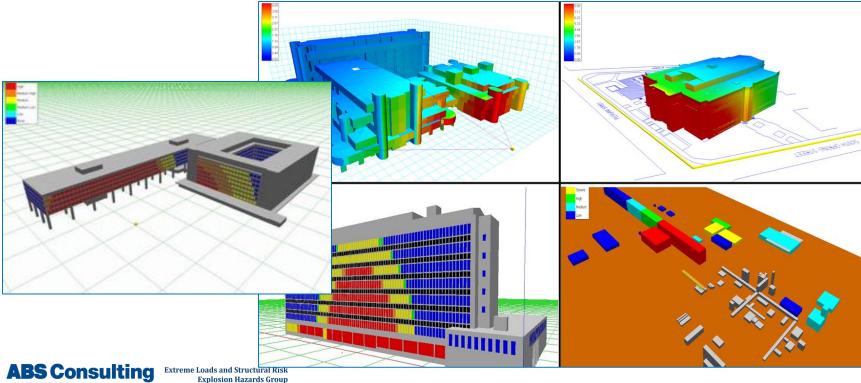
Reporting

• Multiple XLS or CSV reports for building and surface damage percentages, input summary tables, etc...

) <u>E</u> il) 🞽	ile <u>E</u> dit <u>V</u> iew <u>I</u> nsert F <u>o</u> rm 🗦 🛃 🎒 🔍 🎽 🗈 🔁 🗐			ta <u>W</u> indows	: <u>H</u> elp															
	✓ Name																			
	A	В	С	D	E	F	G	н	I	J	К	L	М	N	0	Р	Q	R	S	
1	Name	Length	Width	FloorHeight	LengthBays	WidthBays	Floors	XPos	YPos	ZPos	Angle	PeoplePerBay	RoofAngle	RoofDirection	Windows	Exits	Visibility	CalcType	MaxIndividualOccupa	
2	01_admin	64	92	12	6	9	1	553	125	0	0	0	0	0	11	4	Solid	Automatic	0	
3	02_drum_bldg	112	169	12	11	17	1	376	183	0	0	0	0	^	0	-	المثالم ال	A		
4	03_non-haz_processing_bldg	71	121	12	7	12	1	92	178	0	0	0	0			C	Soloct	One	or More Reports	
5	04_utility_bldg	60	41	12	6	4	1	53	592	0	0	0	0			-	Sciect	One c	or more reports	
6	05_lab_trailer	12	60	12	1	6	1	538	135	0	0	0	0							
7	06_drum_receiving	53	81	12	5	8	1	323	142	0	0	0	0	Filter						ć
8	07_pump_bldg	34	28	12	4	3	1	-58	820	0	0	0	0							
9	08_cam_bldg	252	122	12	25	12	1	344	1131		0	0	0	Build	ing Sum	mary I	Loads			
10	boiler_bldg	27	41	12	3	4	1	113	592	0	0	0	0		ing Wall			s		
11	control_bldg	41	25	12	4	2	1	288	758	0	0	0	0	Build	ing Root	Appli	ied Load	le le		
12	decant_bldg	164	86	12	16	8	1	325	352	0	0	0	0		ing Appl					
13															ing Appi ing Wind					
14																				
15															ing Dooi					
16 17														Build	ing Wind	dow L	oads for	PT		
17															ing Door					
19														Build	ing Dam	age L	.evels			
20														Build	ing Com	poner	nt Dama	ae Leve	ls	
21															ing Wind					
22															ing Dooi					
23															ing Risk		luge Lev	010		
24																				
25															ing Exce	edan	ce			
26															ing Fire					
27															ing Scre					
28														Build	ing Toxi	C				
29																				
30 31														Selec	ct a singl	e rep/	ort to see	e its des	cription	
31 32														Jeiei	at a singi	onopi	01210-300	0 110 000	onpriorit.	
32 33																				
34																				
35																				
36																				
37																				
38																				
39																				
40																				
41																				
42																				
43																				
44																				
45														A11.7	D= AIL	0# 1	Toggle A	MI .	<u>0</u> K	Car

Scripting

• Full scripting engine using VB.NET code allows the use full access to all internal data and raw power for manipulating objects, creating custom outputs, etc...

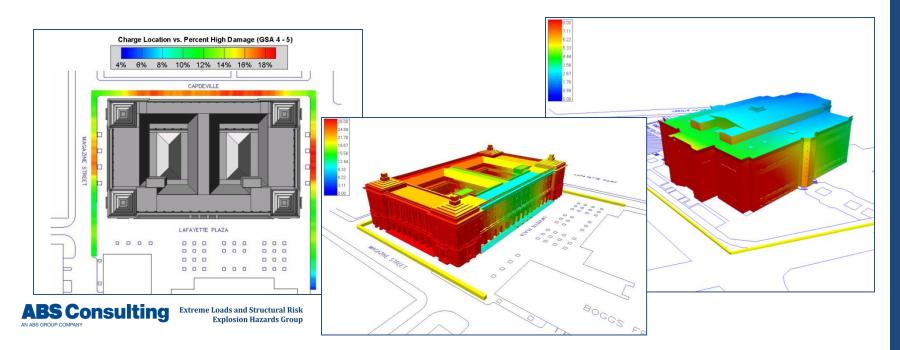

📆 Script Editor	
File Script	
Script References	
Imports System.Windows.Forms Imports Facet3d	
Public Class Script	
Public Sub Main()	
Try '//Enter Script Code Below This Comment	
Catch ex As System.Exception ErrHandler("Script Runtime Error", ex) End Try End Sub	
End Class	
Error	ne

Geometry – Meshes

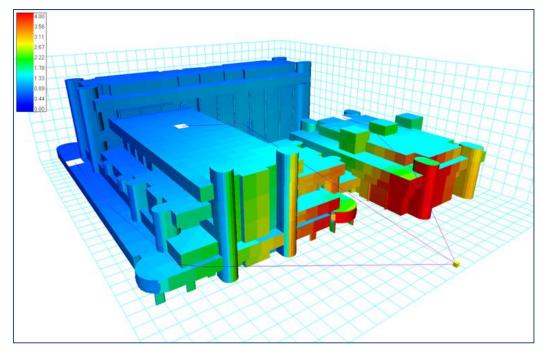
- Basic geometric building block is the 3D surface, a planar triangular or rectangular surface on which calculations take place and results are presented
- Surfaces are grouped into meshes, which are analogous to AutoCAD layers
- Support for import of DXF files allows surfaces to be created in AutoCAD as 3DFACE objects and then imported into FACET3D along with select 2D geometry for scene enhancement
- Export of FACET3D models back to DXF is also supported, including select results

Geometry – Predefined Buildings

- Predefined buildings are rectangular structures the user defines by simple properties such as length, width, floor height, # of floors, bays, etc...
- They allow quick definition of a simple structure
- Multiple materials may be applied to wall faces and the roof
- Occupancy numbers may be entered to allow aggregate and individual risk calculations


	redenned buildings		the second second	and the second states			
	Name 01_admin Length 64 Width 92 Floor Height 12 Roof Angle 0 Roof Direction NS ▼	# Bays 6 # Bays 9 # Floors 1 Transparency Calc Type Shelter Type	Angle 0 People/Bay 0	125 0 Exits ? Windows E 0.1 E 0.3 5 0.2 E 0.9 W 0.9 S 0.6 S 0.2 S 0.6 W 0.9 S 0.6 W 0.9 S 0.6 W 0.9 S 0.6		Angle	
	Name e-w lb walls.grf n-s walls.grf owsj.grf roof deck.grf		Enabled True True True True	PI Curves 2 4 4 4	Building Face E.W S.N R R	Component Class Primary Secondary Secondary Secondary	
Extreme Loads and Structural Risk Explosion Hazards Group	Toggle Enable			Add M	aterial Remove M	laterial Edit Material	

BLAST LOAD CALCULATION METHODS


High Explosives

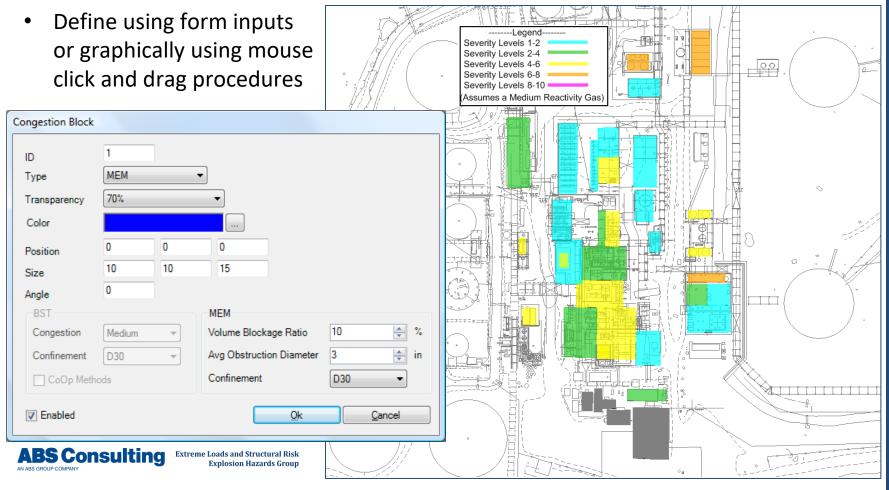
- Uses hemispherical surface burst scaled curves and Kingery-Bulmash equations to calculate incident and reflected blast loads on surfaces
- Angle of incidence effects are included using CR and IR Alpha curves
- Results are contours on the model surface and line contours on the ground plane
- In addition to a single HE threat, a line threat can be defined which represents an envelope of possible locations for a charge

High Explosives - Path Finding

- Blast wave diffraction around objects may be accounted for using the path finding features
 - Normal methods use a straight line distance between threat and target to calculate distance
 - Path finding calculates the shortest unobstructed distance
 - This longer distance is used in blast result calculations as a pragmatic way to decrease conservatism on side and back walls as well as shielded structures
 - Straight line calculations take seconds, path finding often accomplished in a few minutes

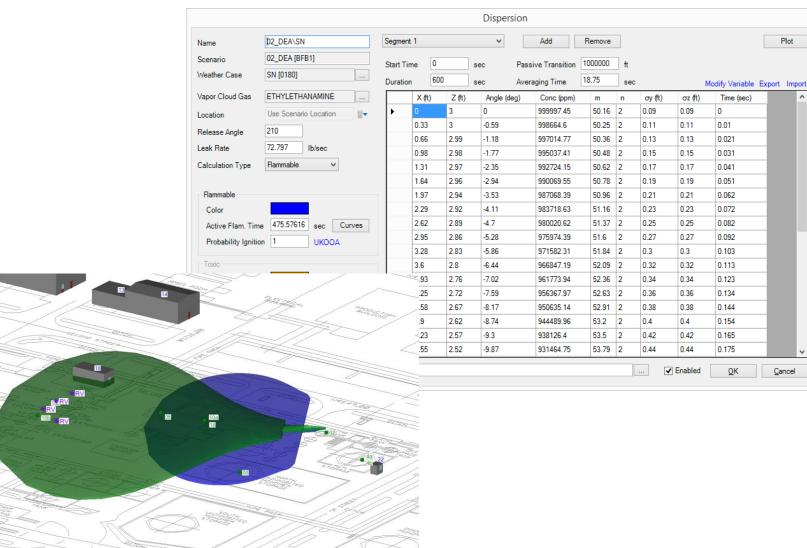
Extreme Loads and Structural Risk Explosion Hazards Group

18


Vapor Cloud Explosions Methods

- TNO Multi-Energy Method (MEM), Baker-Strehlow-Tang (BST) Method (including Explosion Research Cooperative methods)
- Options to calculate or manually input Energy, Severity Level, and Flame Speeds
- Extensive chemical database of flammables as well as facilities to create custom mixtures of flammables and their resulting explosion properties (Energy/Volume, Laminar Burning Velocity)

5	.,						MALL C. D.	17,0000	
			Name	Туре	Property	Refs	MW (g/mol) Boil Pt [Dippr] (K)	17.0306 239.72	^
Threat			Acetone Cyanohydrin	Pure	Te,TI	14	Boil Pt [Dippr] (K) Boil Pt [VapPress] (K)	239.72	•
			Ammonia	Pure	F,Te,TI	3	Melt Pt (K)	195.41	
Threat Name 05_180deg Threat Type	Vapor Cloud (ME)	M) 🔻	ETHYLETHANAMINE	Pure	F,Te,TI TI	23 3	Critical Temp (K)	405.65	
			Hydrogen Cyanide Methyl Methacrylate	Pure Pure	TI Te,TI	3 13	Critical Pressure (Pa)	11280000	
Multi-Energy Method Parameters	Quick Calc		Methyl Methacrylate Mix 13-14	Pure Mixture (3)	F,TI	13 4	- Flammable		
			Mix 13-14 Mix 19	Mixture (3)	Te,TI	2	LBV (cm/sec)	45	
Vapor Cloud Gas N-Hexane	Target Pos	sition	N-Butyl Acrylate	Pure	Π	2	LFL (%)	16	
Volume Blockage Ratio 5 👻 🕺	0 0	0	Nitrogen	Pure	Te	2	UFL (%) Ct (fraction)	25 0.143884892	
			Oxygen	Pure	Te	1	At (fraction)	0.143884892 0.965277778	
	Incident	◎ Ref	Sulfur Dioxide	Pures.	п	1		0.9652////8	×
Confinement D30 -		-	Sulfur Trioxide	<u>×</u>			XY Plot		^
	Calc		TMA Toluene				VaporDross	sure (EqNo. 101)	
Energy 2.25362E+09 in-Ibf Severity Level 4.5942			TRIMETHYLAMINE		orPressure (Eq.	1	vaporeres		<u></u>
Override Energy and Severity Level		ft	WATER		nperature, K	_			1
		ps			ue, Pa				/ 1
		P~		Axes X Min -1		1e+	+07		1 1
Energy Reduction Factor 0.20			Journal Editor	Y Min -1		-			
		Dippr .	Equation Editor	X Max -1					
Cloud Center Position/Dimensions	0			Y Max -1		8e+	+06	/	
X coord 159.5 ft Length 75 ft	Siting Anal	Eq. No.	Eq101 🗸	Log-Log Fals		_			
	Frequen	А	90.483	Markers Fals	e	مِ			
Y coord 793.105 ft Width 32.07 ft						<pre>a</pre>	106		
Z coord 2.75 ft Height 5.5 ft		В	-4669.7			/alu			
Angle 0 deg 13228.88 ft3		С	-11.607						
10 00 10 10 10 10 10		D	0.017194			4e+	+06		
		E	1			_			
		Tmin	195.41	Labels		2e+	+06		
✓ Enabled		Tmax	405.65						
		Plot	OK Caral				0		
		FIOT	<u>OK</u> <u>Cancel</u>				200 250	300 350	400
								perature, K	
ABS Consulting Extreme Loads and Structura								-	
AN ABS GROUP COMPANY Explosion Hazards	Group		Add Add	dd Mixture Remove	e Renar		ppy Reassociate List Ref	fs Update	
		N	Add Add	dd Mixture Remove	- Kena	ame Co	Py neassociate List Re	opdate	


Vapor Cloud Explosions Congestion Blocks

- Vapor clouds may be created directly or by defining regions of congestion and a flammable dispersion cloud and allowing FACET3D to determine the overlap regions and resulting explosion sources
- Congestion regions can be MEM (volume blockage ratio and average pipe diameter) or BST (congestion and confinement) methods

Dispersions

- Flammable dispersion vapor clouds are imported from PHAST (full time dependent Gaussian profile)
- Used for toxic and flammable effects

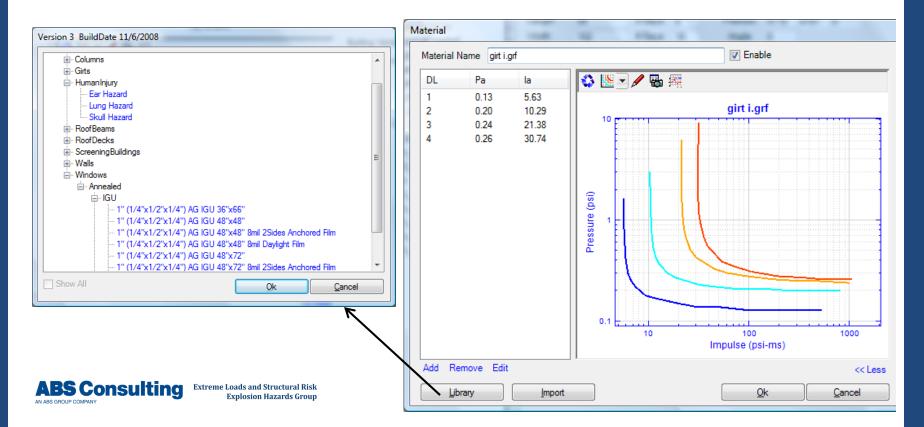
Vapor Cloud Explosions Threat Creation

- Vapor clouds and congestion blocks are intersected
- Automatic rules for combining and separating threats for multiple congestion blocks
- Extensive options to control threat creation process as well as a detailed reports
- QRA use auto rotate feature to capture threats and freq. for all directions for each weather (wind rose)

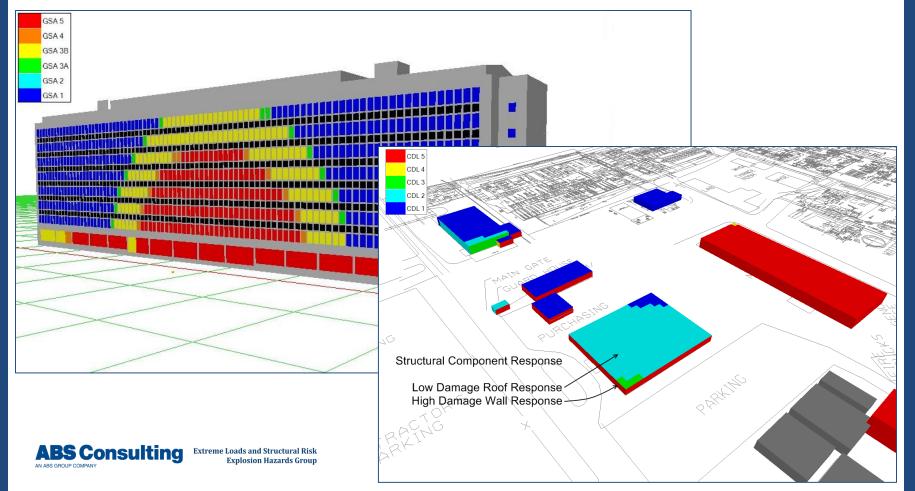
Vapor Cloud	Vapor Cloud Dialog Vapor Cloud _ 1 (Propane) Angle · · · · · · · · · · · · · · · · · · ·
Overlap Region (Explosion Source)	Congestion Block
Automatically Created Vapor Cloud Source Threat from Overlap	

Pressure Vessel Burst, BLEVE, and User Defined Threats

- PVB and BLEVE threats are possible using pre-defined materials
- Both use methods outlined in CCPS publications
- User defined threats are also possible by entering pressure and impulse points as a function of distance from the event
- User defined threats allow any type of complex blast event to be modeled


Threat	
Threat Name pressure_vessel_burst Threat Ty	ype PVB
PVB Threat Position 0 0 Gas Type Ideal Gas • Gamma 1.4 300 Shape Cylinder • P1 300 psia Vfull 30000 gal FragFrac 0 [0-1] >Recommend 1.2 <gamma<1.67< td=""> 100</gamma<1.67<>	Threat Threat Name [pg_bleve] Threat Name [pg_bleve] Threat Type Bleve Bleve Position 0 0 Material Ammonia Shape Cylinder P1 3000 gal gal gal gal gal
atmospheric temperature) >FragFrac is the fraction of energy which accelerates fragments >Surface burst IO IO IO Log X Axis IO Enabled	FragFrac 0 [0-1] >Energy calculation assumes isentropic expansion >FragFrac is the fraction of energy which accelerates fragments >Surface burst 100 0 100 100 10 100 10 100 10 100 10 100 10 100 10 100 10 100 10 100
ABS CONSULTING Extreme Loads and Strue Explosion Haza	

STRUCTURAL RESPONSE

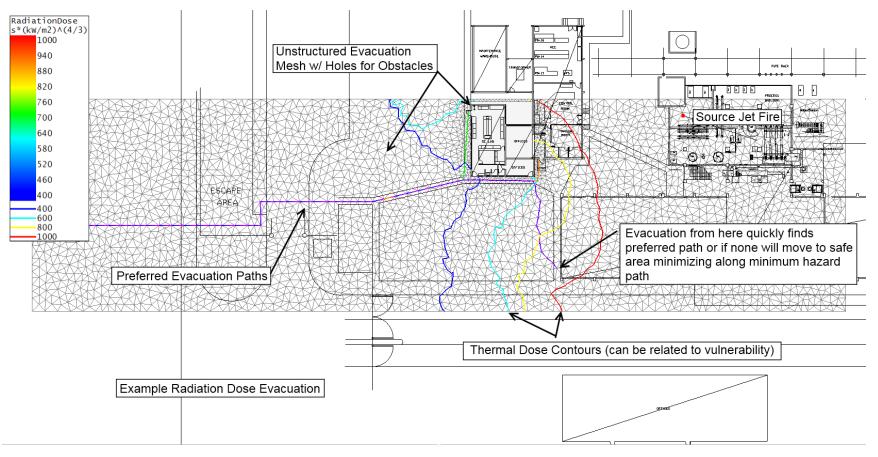

Material Definition

- Structural response is modeled using pressure-impulse (P-I) diagrams
- P-I diagrams can be created from many 3rd party tools from SDOF to FEA
- FACET3D has a built in library of common structural component P-I diagrams often seen in the process industries
- P-I diagrams can be imported from DPLOT files

Material Definition

- Examples of P-I diagram usage are for window response to blast loads and component response of petrochemical buildings to overpressures
- For petrochemical buildings, FACET3D can generate a building damage level (BDL) from multiple wall and roof components based on their importance to the structure and individual component damage level (CDL)

FIRE AND TOXIC EVACUATION



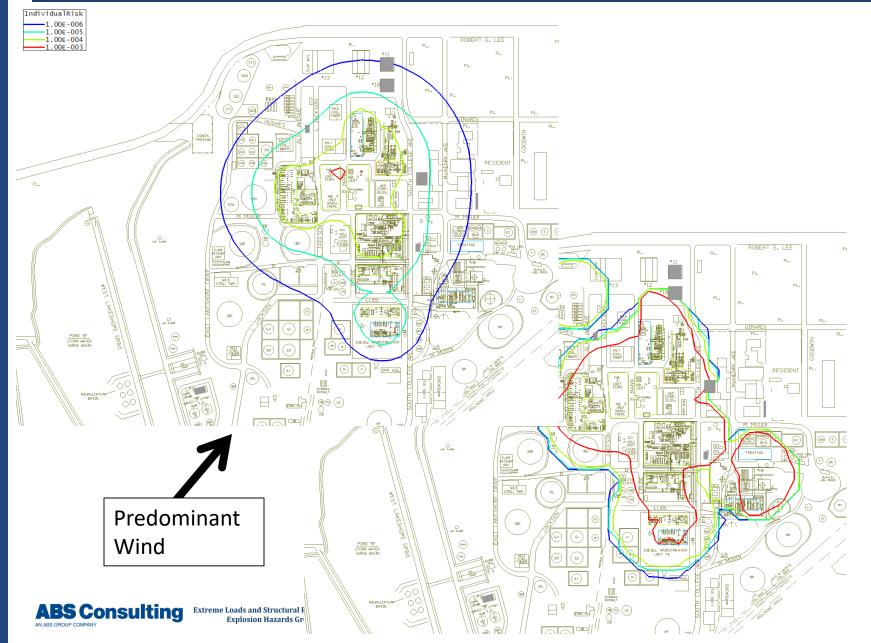
•Fire and toxic evacuation using intelligent "path finding" on unstructured mesh.

•Path finding will minimize vulnerability by choosing best path to nearest safe zone

Muster point or shelter in place building

•Full user control to designate preferred paths or obstructed zones (high congestion unit)

RISK ANALYSIS


Features

- Extensive import of PHAST dispersion, fire and toxic results
 - 6.7
 - 7.x
- Define scenarios with equipment type/counts and a frequency database for determining base leak frequencies (DNV Leak database built-in)
- Weather module with wind rose data
- Models for calculating lethality from all consequence hazard types (explosion, fire, and toxics)
- Individual risk results and aggregate risk results
 - Occupied buildings
 - People outside (via 2D polygon regions) Beta feature

Risk

Risk Output

	A	В	С	D	E	F	G	Н		J	К	L M	N	0	Р	
1	Active Sources:															_
2	Explosion	558 of 558	3 Active	< Sum	imary o	f active	hazard	sources	s in this	report						
3	Dispersion	62 of 62 A	ctive													
4	Fire	88 of 88 A	ctive													
5													¢	i l		
6	Individual Risk															
7		Time	Frac.	Bla	ast	The	rmal	То	xic	Total				_		
8	Building	day	night	day	night	day	night	day	night	4 1						-
	01 OCC	0.238095		1.22E-06				1.20E-11			0%					-
	03 Lab Washing	0.238095		5.51E-05												
	04 MBI Fieldhouse	0.059524		7.08E-07		1.44E-05		5.29E-07			1%			_		
12	07 West Guardhouse	0.25		2.14E-07							0%					
	08 WWTP	0.238095		4.52E-04												
	09 MBI Boilerhouse		0.357143		1.64E-05		5.22E-04		1.61E-06	5.40E-04	18%			-		+
	10 Machine Shop	0.238095		1.31E-03				6.17E-09		1.31E-03	44%					
	11 Welding Shop	0.238095		5.87E-04				1.99E-09		5.87E-04	20%					
17				81.28%	0.55%	0.49%	17.61%	0.02%	0.05%							+
18																
19	Aggregate Risk F	N Curve	Data													\neg
20		F	Dutu				E NI C	. .			D:!	_				
21		0.004721					F-IN C	urve to	or 8 Oc	cupied	Building	S				-
22		0.004721		1.00E-0	02											-
23		0.003451														
23		0.003451														-
25		0.003447			TT.											
26		0.003447														
27		0.00342							•							
28		0.00342		>									†			
29		0.003418		1.00E-C	12											
30		0.003418		B 1.00E-0	15											
31		0.002497		æ												
32		0.002497														
33		0.002387														+
34		0.002387														+
35		0.002358														+
36		0.002358								1.22E-06 0%		+				
37		0.001785		1.00E-0												+
38		0.001785			1	1.5	2		2.5		3.5	4	4.5	5		-
39		9.36E-05								N						+
																+
40																+
40 41				< Raw	/ dump	all sour	ces and	buildin	g comb	inations	(27,000 li	nes here)	allowing	detaile	d risk a	ana
40 41 42	Raw FN data				Freq	Hours		Persons	_		-					
41 42		VarType	SourceID							-						
41 42 43	Bldg		SourceID 44F637D4			40	0.238095	10	TRUE	8.54E-06	0.006765					
41 42 43 44		VarType Exp Exp	44F637D4	0.000676	3.59E-05		0.238095	10 10								

31

ADDITIONAL FEATURES / SUMMARY

Features

- Automatic online updating
- Extensive command line support for more advanced features
- Import line and surface iso-contours from CFD calculations
- Secure licensing from web server that's easy for users and non-intrusive

Summary

- In summary, FACET3D is an excellent platform for performing a wide array of calculation types on a set of 3D geometry
- Built in 3D visualization of setup and results means easy use and quick generation of results for clients
- Easily extendable to future tasks to meet market demands

Future

- Aggregate risk which includes outdoor population sets (mostly done)
- PHAST v7 file format conversion (mostly done)
- Discharge and dispersion internal models
- Jet and pool fire models
- Time dependent ignition probability model

